It's time to continue our palaeoartistic discussion of the famous 1850s Crystal Palace prehistoric animal sculptures. As you'll know if you've read part 1 of this series, I've been supplying artwork and palaeoart notes to the Friends of Crystal Palace Dinosaurscharity for their new 'about the statues' web pages. What started as a small project has ballooned into several weeks of illustration, research and writing based around these charming and fascinating early palaeoartworks, culminating in this series of blog posts. As before, we'll be reviewing the models in roughly sequential order. Previously, we looked at the Dicynodon, "Labyrinthodon" and marine reptiles, and today we'll be covering the Jurassic Teleosaurus, the Jurassic and Cretaceous pterosaurs, and the Late Cretaceous Mosasaurus. Those familiar with the Crystal Palace prehistoric menagerie will recognise a dinosaur-shaped hole in that line-up but, have no fear: we'll be covering them next time, and then the mammals after that.
As before, I want to point out that the following notes are expanded and referenced versions of content I've provided for the Friends of Crystal Palace website, and readers are encouraged to check out those pages to supplement the dedicated palaeoartistic assessment provided here. Also, while I don't want to labour the need for increased interest and investment into the Crystal Palace sculptures - there's lots of that in the introduction to part 1 - I want to remind readers that these models, now approaching 170 years old, need a lot of care and maintenance. Efforts to restore the models are underway, and you can help by donating money or volunteering your time to keep the site maintained.
The result is a blend of crocodylian and teleosaurid anatomy, and it is not obvious why Hawkins did not reflect the anatomy of teleosaurids more faithfully when this effort was made for other models. Subsequent artworks by Hawkins (e.g. his 1862 posters produced for the Department of Science and Art - see Rudwick 1992) show the same erroneous interpretations, so he may have simply been misinformed or unaware of what teleosaurids really looked like. To be fair to Hawkins, he is far from the only palaeoartist to apply scalation patterns from modern crocodylians to their ancient, distant relatives. Perhaps he just assumed - as many still do today - that all crocodylian-like animals are and were pretty much alike. It’s more interesting that Owen knew the precise nature of teleosaurid scale arrangement - even down to the differences between species - and yet Hawkins’ models turned out as they did. Did Owen not tell him? Did Hawkins ignore him? Was there a practical reason for why the design couldn't be altered? Even more intriguingly, despite Owen being unafraid of pointing out aspects of the models that he disagrees in his 1854 sculpture guide, he made no mention of this error. Is this evidence of Owen not having much regard for these models, or maybe not wanting to draw attention to a mistake he could have fixed? I'm not sure we know what happened there, but this obvious difference between Hawkins' models and Owen's knowledge certainly fits wider evidence that Owen gave very little input to the Crystal Palace project (Secord 2004; Dawson 2016).
The head of Hawkins'Mosasaurus is wide and boxy, consistent with Owen’s (1854) interpretation of the holotype skull dimensions being 2.5 x 5 feet. As with “Labyrinthodon”, Hawkins accurately captured the palatal teeth of Mosasaurus. He seems to have modelled the soft-tissues on monitor lizards, these being realised as close relatives of mosasaurs as early as 1800. Extensive lips, voluminous tissues around the eye socket, and laterally-facing, posteriorly-positioned nostrils are obvious monitor features, and the skin texture of the body shows large ossicles surrounded by smaller basement scales. This recalls the osteoderm-studded skin of certain large and robust monitor species, including komodo dragons and white throats.
As before, I want to point out that the following notes are expanded and referenced versions of content I've provided for the Friends of Crystal Palace website, and readers are encouraged to check out those pages to supplement the dedicated palaeoartistic assessment provided here. Also, while I don't want to labour the need for increased interest and investment into the Crystal Palace sculptures - there's lots of that in the introduction to part 1 - I want to remind readers that these models, now approaching 170 years old, need a lot of care and maintenance. Efforts to restore the models are underway, and you can help by donating money or volunteering your time to keep the site maintained.
Teleosaurus
There are several anatomical peculiarities about Hawkins’ teleosaurids that not only conflict with modern understandings of these animals, but also those of Victorian Era palaeontologists. Owen (1854) stressed the great similarity between teleosaurs and modern crocodylians - specifically the gharial - and it appears that modern crocodylians ultimately informed Hawkins’ take on these marine crocodylomorphs more than their actual fossils. Teleosaurid scalation was quite different from all modern crocodylians in that their dorsa bore two medial rows of large scutes from their necks to their tails, and their bellies were covered with a shield of interlocking scutes. This was well known to Victorian anatomists (e.g. Owen 1842), but Hawkins seems to have used Crocodylus scute arrangements instead, depicting several rows of smaller dorsal scutes and omitting any trace of belly armour. Over at Tetrapod Zoology, Darren Naish has suggested that saltwater crocodiles may have been specifically referenced for this arrangement. Gharial cranial proportions seem to have been used to model the posterior head, this region being short and narrow (like a gharial) instead of long and expanding outwards towards the back of the skull (as in teleosaurs).
Lemmysuchus obtusidens, a teleosaurid of similar size as the Crystal Palace Teleosaurus, but the skull and dentition are more robust. Note the osteoderm arrangment along the back and proportions of the skull - teleosaurids had a much longer and broader temporal region than Hawkins captured, perhaps because of his referencing living crocodylians. As an aside, note that this artwork has a pretty obvious homage to another classic piece of Victorian palaeoart, John Martin's 1840 The sea dragons as they lived. |
Pterosaurs
Two sets of pterosaurs were created for the Crystal Palace display: two larger individuals representing pterodactyloids from British Cretaceous Chalk deposits, and two smaller animals from the Jurassic Great Oolite Group. As originally positioned, these models flanked the dinosaur sculptures in the centre of the Geological Court. Alas, the original models of the smaller pterosaurs went missing in the 1930s (McCarthy and Gilbert 1994) and fibreglass replacements installed in 2002 were stolen and destroyed by vandals in 2005. The larger models are still standing but are in disrepair, owing to both their relative delicacy and continued vandalism.Less explicable mistakes in the pterosaurs are their overall proportions. The very first pterosaur fossils known to scientists were complete skeletons showing that their heads were longer than their bodies, and yet Hawkins - like virtually all artists of the 1800s - restored them with small heads and massive torsos. My assumption is that this reflects Hawkins modelling his pterosaurs with an avian physique rather than with exacting attention to fossil material. Close inspection of his models reveals many bird-like details that are inconsistent with pterosaur remains, such as an emphasis on ventral flight muscles, deep bellies, horizontally-held thighs, an extensive pelvic region with a short, poorly defined tail, and a proportionally small head. It is also noteworthy that Hawkins anchored the wing membranes to the body alone, leaving the hindlimbs free. This creates the impression of a bird-like wing arrangement, even though most of his peers were illustrating more accurate bat-like membranes that stretched all the way to the hindlimb (e.g. see illustrations by Soemmerring (1817); Newman (1946) and even Owen (1859)). Though Hawkins observed some aspects of pterosaur form correctly - such as posing one animal quadrupedally, and placing the full length of the foot on the ground - the overall impression is of a goose or swan-like creature with pterosaur features, not a precise reflection of the fossils he had available to him. Hawkins was not alone in making such mistakes, and very few pterosaur restorations from the early decades of palaeontology have accurate body proportions. Indeed, it took a full century before pterosaurs were restored in ways that reflected their anatomy more precisely (Seeley 1901).
Mosasaurus hoffmanni
Lurking behind the dinosaurs and pterosaurs, sometimes almost out of sight, is a partial restoration of the giant mosasaur Mosasaurus hoffmanni. The choice to depict a mosasaur at Crystal Palace was unusual and very progressive. Although their skulls have been known since the 1700s mosasaurids were rarely depicted in palaeoart in the early 19th century, probably owing to being overshadowed by the better-known ichthyosaurs and plesiosaurs. Mosasaurs would become more routinely featured in artwork after palaeontologists excavated their skeletons from the American midwest in the 1860-70s, but it’s rare to see a restoration of a mosasaur of 1850s vintage. Indeed, I’m fairly certain that the Crystal Palace Mosasaurus is among the first attempts at restoring the life appearance of one of these animals. Hawkins’ take was influential enough that other artists heavily referenced his sculpture (e.g. see 1860s work by Louis Figuier), but the discovery of superior mosasaur fossils just two decades after Crystal Palace Park opened dated the model relatively quickly.The head of Hawkins'Mosasaurus is wide and boxy, consistent with Owen’s (1854) interpretation of the holotype skull dimensions being 2.5 x 5 feet. As with “Labyrinthodon”, Hawkins accurately captured the palatal teeth of Mosasaurus. He seems to have modelled the soft-tissues on monitor lizards, these being realised as close relatives of mosasaurs as early as 1800. Extensive lips, voluminous tissues around the eye socket, and laterally-facing, posteriorly-positioned nostrils are obvious monitor features, and the skin texture of the body shows large ossicles surrounded by smaller basement scales. This recalls the osteoderm-studded skin of certain large and robust monitor species, including komodo dragons and white throats.
That rounds up this entry in the series, but come back soon for part 3: a post dedicated to the least famous and popular Crystal Palace models, the dinosaurs.
Enjoy monthly insights into palaeoart, fossil animal biology and occasional reviews of palaeo media? Support this blog for $1 a month and get free stuff!
This blog is sponsored through Patreon, the site where you can help online content creators make a living. If you enjoy my content, please consider donating $1 a month to help fund my work. $1 might seem a meaningless amount, but if every reader pitched that amount I could work on these articles and their artwork full time. In return, you'll get access to my exclusive Patreon content: regular updates on upcoming books, papers, painting and exhibitions. Plus, you get free stuff - prints, high-quality images for printing, books, competitions - as my way of thanking you for your support. As always, huge thanks to everyone who already sponsors my work!References
- Dawson, G. (2016). Show me the bone: Reconstructing prehistoric monsters in nineteenth-century Britain and America. University of Chicago Press.
- Goldfuss, A. (1831). Beiträge zur Kenntnis verschiedener Reptilien der Vorwelt. Nova Acta Physico-Medica Academiae Caesareae Leopoldino-Carolinae Naturae Curiosorum, 15:61-128.
- Goldfuss, A. (1845). Der Schädelbau des Mosasaurus, durch Beschreibung einer neuen Art dieser Gattung erläutert. Nova Acta Academa Ceasar Leopoldino-Carolinae Germanicae Natura Curiosorum 21:1-28, pl. VI-IX.
- Jäger, K. R., Tischlinger, H., Oleschinski, G., & Sander, P. M. (2018). Goldfuß was right: Soft part preservation in the Late Jurassic pterosaur Scaphognathus crassirostris revealed by reflectance transformation imaging (RTI) and UV light and the auspicious beginnings of paleo-art. Palaeontologia Electronica, 21(3), 1-20.
- Lindgren, J., Kaddumi, H. F., & Polcyn, M. J. (2013). Soft tissue preservation in a fossil marine lizard with a bilobed tail fin. Nature Communications, 4, 2423.
- McCarthy, S., & Gilbert, M. (1994). The Crystal Palace dinosaurs: The story of the world's first prehistoric sculptures. Crystal Palace Foundation.
- O'Sullivan, M., & Martill, D. (2018). Pterosauria of the Great Oolite Group (Middle Jurassic, Bathonian) of Oxfordshire and Gloucestershire, England. Acta Palaeontologica Polonica, 63(4), 617-644.
- Owen, R. (1842). Report on British fossil reptiles, part II. Report for the British Association for the Advancement of Science, Plymouth, 1841, 60-204.
- Owen, R. (1854). Geology and inhabitants of the ancient world (Vol. 8). Crystal Palace library.
- Owen, R. (1859). On a new genus (Dimorphodon) of pterodactyle, with remarks on the geological distribution of flying reptiles. Report for the British Association for the Advancement of Science, 28, 97-103.
- Rudwick, M. J. (1992). Scenes from deep time: early pictorial representations of the prehistoric world. University of Chicago Press.
- Secord, J. A. (2004). Monsters at the crystal palace. In: de Chadarevian, S, & Hopwood, N. (eds). Models: the third dimension of science, Stanford University Press. 138-69.
- Seeley, H. G. (1901). Dragons of the air: an account of extinct flying reptiles. Methuen & Company.
- Williston, S. W. (1914). Water reptiles of the past and present. University of Chicago Press.